THE MOZART EFFECT: EVIDENCE FOR THE AROUSAL HYPOTHESIS
نویسندگان
چکیده
منابع مشابه
The Mozart effect: evidence for the arousal hypothesis.
This study investigated the effect of music listening for performance on a 25-question portion of the analytical section of the Graduate Record Exam by 72 undergraduate students (M age 21.9 yr.). Five levels of an auditory condition were based on Mozart Piano Sonata No. 3 (K. 281), Movement I (Allegro); a rhythm excerpt; a melody excerpt; traffic sounds; and silence. Participants were randomly ...
متن کاملArousal, mood, and the Mozart effect.
The "Mozart effect" refers to claims that people perform better on tests of spatial abilities after listening to music composed by Mozart. We examined whether the Mozart effect is a consequence of between-condition differences in arousal and mood. Participants completed a test of spatial abilities after listening to music or sitting in silence. The music was a Mozart sonata (a pleasant and ener...
متن کاملArousal and mood factors in the "Mozart effect".
Some investigators of the "Mozart effect" have not controlled for the influence of differences in arousal or mood induced by treatment conditions. Studies by Rideout and colleagues reported differences in spatial reasoning after listening to a Mozart sonata compared against a relaxation instruction tape. The conditions may have affected subjects' arousal differentially, with the sonata increasi...
متن کامل“the effect of risk aversion on the demand for life insurance: the case of iranian life insurance market”
abstract: about 60% of total premium of insurance industry is pertained?to life policies in the world; while the life insurance total premium in iran is less than 6% of total premium in insurance industry in 2008 (sigma, no 3/2009). among the reasons that discourage the life insurance industry is the problem of adverse selection. adverse selection theory describes a situation where the inf...
15 صفحه اولthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Perceptual and Motor Skills
سال: 2008
ISSN: 0031-5125
DOI: 10.2466/pms.107.6.396-402